Difference between revisions of "Dirty Media"

From Dead Media Archive
Jump to: navigation, search
(E-waste: A Provisional Response)
(The Emergence of E-Waste)
Line 31: Line 31:
  
 
==The Emergence of E-Waste==
 
==The Emergence of E-Waste==
 +
 +
[[File:Unep.who-gets-the-trash.gif|300px|thumb|left|Who gets the trash?]]
 +
 
'''“Over the past two decades or more, rapid technological advances have doubled the computing capacity of semiconductor chips almost every eighteen months, bringing us faster computers, smaller cell phones, more efficient machinery and appliances, and an increasing demand for new products. Yet this rushing stream of amazing electronics leaves in its wake environmental degradation and a large volume of hazardous waste— waste created in the collection of the raw materials that go into these products, by the manufacturing process, and by the disposal of these products at the end of their remarkably short lives.” -Grossman, High Tech Trash'''
 
'''“Over the past two decades or more, rapid technological advances have doubled the computing capacity of semiconductor chips almost every eighteen months, bringing us faster computers, smaller cell phones, more efficient machinery and appliances, and an increasing demand for new products. Yet this rushing stream of amazing electronics leaves in its wake environmental degradation and a large volume of hazardous waste— waste created in the collection of the raw materials that go into these products, by the manufacturing process, and by the disposal of these products at the end of their remarkably short lives.” -Grossman, High Tech Trash'''
  

Revision as of 08:45, 15 December 2010

Error creating thumbnail: Unable to save thumbnail to destination
Neoliberalism in a ("mystical") nut-"shell"

"Dust thou art, and unto dust thou shalt return." –Genesis 3:19

"The tradition of all dead generations weighs like a nightmare on the brains of the living." –Marx, The Eighteenth Brumaire


Your iPhone is sleek and beautiful. It was designed in California and made in China. It contains within its form—the form of the commodity—the blood of the subaltern exploited for its production. It will soon be obsolete, ready to be burned in order to harvest the precious metals inside. It will soon turn into toxic dust. This is a dossier about this blood and this dust.

Mineral Extraction, or, Why There is No Software and "Immaterial Labor" is Bullshit

An open pit mine in Australia. The striation of a thousand plateaus. The striation of the earth produces a smooth commodity.

The electronic devices that proliferate the lives of those of us on the fortunate side of the “digital divide”—if, indeed, such qualitative judgments are warranted—begin life as raw minerals in the crust of the earth. It is these unrefined kernels that are used to create the “mystical shell” (Marx 1976, 103) of our iPod, iPhone, iPad—in short, our iWorld. But before we can fetishize the sleek shells that Apple designs in California, the materials required to operate the complex computers inside must be harvested from the ground, often at great expense to the environment and human health.

“It hasn’t helped us come to grips with high tech’s waste that when thinking about high tech many of us blur the distinction between hardware and software, forgetting that in addition to armies of computer-science jocks encoding the next operating system or search engine, high tech also means tons of chemicals, metals, and plastics” (Grossman 2006, 12). Kittler, in his essay “There is No Software,” argues that it is a mistake to blur the distinctions between hardware and software:

Under these tragic conditions, criminal law, at least in Germany, has recently abandoned the very concept of software as mental property; instead, it defines software as necessarily a material thing. The high court’s reasoning, according to which no computer program could ever run without the corresponding electrical charges in silicon circuitry, can illustrate the fact that the virtual undecidability between software and hardware by no means follows, as systems theorists would like to believe, from a simple variation of observation on points. On the contrary, there are good grounds to assume the indispensability and, consequently, the priority of hardware in general. (1997, 152)

“Software, if it existed, would be just a billion-dollar deal based on the cheapest elements on earth. For in their combination on chip, silicon and its oxide provide perfect hardware architectures” (153).

Žižek believes that the way to escape ecological disaster is through an acceleration of the process of denaturing:

I think what we should do to confront properly the threat of ecological disaster is not this New Age stuff of breaking through from this technologically manipulative mood to find our roots in nature, but, on the contrary, to cut off even more our roots in nature. I claim that it is our roots in nature that prevent us from taking seriously things that we already know: that all this normal life we see around us disappear. We can imagine it, but we do not really believe—I mean we don’t effectively act upon it. So again my paradoxical formula is: ecology is the greatest threat, but to confront it properly, we need to get rid of the very notion of nature, meaning nature in its ideological investment, nature as some kind of a normative model of balance and harmonious development. We should become more artificial. (qtd. in Taylor 2009, 162)

See Žižek in action here: http://www.youtube.com/watch?v=iGCfiv1xtoU. As Steven Shaviro has recently suggested, “there is no going back on the network and its circuits of celebrity and control. There is no possibility of reverting to an earlier, supposedly clearer and more honest state of affairs. The only way out is the way through. The only possible oppositional stance is one of embracing these new control technologies, generalizing them, and opening them up without reserve” (2010, 116).

Super-purified silica sand is processed into wafers. This antiseptic setting belies the toxic conditions of silica's refinement.

E-waste, or, How the World Does Dirt

"digital wizardry relies on a complex array of materials: metals, elements, plastics, and chemical compounds. Each tidy piece of equipment has a story that begins in mines, refineries, factories, rivers, and aquifers and ends on pallets, in dumpsters, and in landfills all around the world."-Grossman, High Tech Trash

As consumer electronics become an important, if not, predominant form of commodity being consumed in many countries around the world, the concern regarding such technologies obsolesces and subsequent disposal has become an increasingly germane issue facing the contemporary world. What’s now know as “e-waste” or “electronic waste” has increasingly become one of the worlds most problematic forms of disposable product.

Because these electronics often contain hazardous chemicals or other toxic materials (such as Copper, antimony, beryllium, barium, zinc, chromium, silver, nickel, and chlorinated and phosphorus-based compounds, as well as polychlorinated biphenyls (PCBs), nonyphenols, and phthalates) (Grossman 2006), their safe disposal require specialized forms of waste management or handling. Unfortunately, such concerns are all to often disregarded by the economy of “fast and cheep” disposal that dominate much e-waste’s eventual destinations, mostly in different parts of Asia and continental Africa, which first world companies and citizens alike are more than willing to turn a blind eye to. In this section, we will be entering a world of waste and circulation, the veritable dark underbelly to Marx’s ‘abode of production’, where the only thing more exploitative than the conditions under which many of the worlds consumer electronics are produced is the manner in which they are disposed of.

The Emergence of E-Waste

Who gets the trash?

“Over the past two decades or more, rapid technological advances have doubled the computing capacity of semiconductor chips almost every eighteen months, bringing us faster computers, smaller cell phones, more efficient machinery and appliances, and an increasing demand for new products. Yet this rushing stream of amazing electronics leaves in its wake environmental degradation and a large volume of hazardous waste— waste created in the collection of the raw materials that go into these products, by the manufacturing process, and by the disposal of these products at the end of their remarkably short lives.” -Grossman, High Tech Trash

From the emergence of the digital age, industrial nations engaged in the never ending proliferation of electronics and other informational devices have been engaged in a relentless cycle of technological growth where preexisting (and often functional) electronic and communications infrastructure is continuously replaced by newer updated versions. As a result of this continuous drive to replace older (and not so old) electronics with new ones, many advanced nations around the world have increasingly found themselves with a growing surplus of obsolete electronics ranging from cell phones, home computers, and an assortment of other industrial and consumer electronics. While in the 1970s and 80s the problem of accounting for (i.e. developing a systematic program for dealing with the safe disposal and/or recycling of such products) discarded electronics seemed like an issue to be dealt with in the distant future, by the 1990s the massive proliferation of personal electronics and their ever accelerating rate of obsolescence expanded to a proportion that threatened to literally bury many advanced nations under a mountain of electronic waste (Rich, 2006).

According to environmental journalist Elizabeth Grossman, as of 2005 there were approximately 1 billion personal computers and over a billion cells phones in use around the world (Grossman, 2006). Unsurprisingly, the highest concentrations of consumer electronics exist in the worlds wealthiest nations. In the United States alone, Americans own over 200 million personal computers, with nearly “five hundred PC’s per thousand people,” standing as the highest per capita concentrations of computers for any large country internationally. Following the U.S., the next most “PC populous” regions are “Europe, Canada, Hong Kong, Japan, South Korea, and Australia, which all average about two hundred to five hundred PCs per thousand people. In northern Europe the concentration of computers approaches that of the United States, and matches it in Scandinavia. Moving south and east, the number of PCs decreases to about fifty to two hundred per thousand people in Spain, Portugal, and eastern Europe.”(Grossman 2006). In the developing world, India and China have become some of the fastest growing markets for consumer electronics. Nationally, India is estimated to have about 5 PC’s per every thousand of its over one billion inhabitants, with a growth rate of ownership at about 40% per year (Grossman, 2006). Similarly in China, where the economy has experienced an exponential amount of industrial and commercial growth, there is approximately ten to fifty PC’s per every thousand people, a ratio that is currently increasing at a staggering rate.

Today it is estimated that Americans, with a population of roughly 290 Million, own over 2 billion pieces of high-tech consumer electronics (Grossman, 2006). Making up this demographic is a staggering density of electronic ownership:

Americans own over 200 million computers, well over 200 million televisions, and over 150 million cell phones. With some five to seven million tons of this stuff becoming obsolete each year, 11 high-tech electronics are now the fastest growing municipal waste stream, both in the United States and in Europe. In Europe, where discarded electronics create about six million tons of solid waste each year, the volume of e-waste— as this trash has come to be called— is growing three times faster than the rest of the European Union’s municipal solid waste combined. (Grossman 2006, p.7)

What accounts for this exponential rise in the amount of electronic waste accumulating around the world? The first thing to consider is the rapid rate at which high tech electronics have proliferated over the last few decades in many of the advanced industrial nations. To illustrate this point it suffices to look back on the growth of sales rates of consumer electronics. Take for example the sales rate of consumer electronics in the U.S. between 1997 and 2002, which quadrupled during that period (Grossman 2006). Or even more staggering the growth of cell phone ownership during roughly the same time (1997-2003), which grew from approximately 15 million subscribers to over 740 million in the countries that make up the Organization for Economic Cooperation and Development (including the United States, Canada, Japan, Mexico, South Korea, Australia, New Zeeland, EU countries, Sweden, Iceland, Turkey, and many other eastern European countries) (Grossman 2006).

Taking into account the massive proliferation of electronic goods in conjunction with their dwindling life-spans and almost negligible resale values, it is little wonder that e-waste has reached such a staggering proportion. As Grossman instructively points out:

As technology continues to evolve, and the system of production that keeps costs relatively low persists, any incentive that may exist for most consumers to repair or otherwise extend the life of high-tech electronics disappears. Unless this equation changes, we will continue to acquire newer and newer models, tossing more out as we go along. (Grossman 2006)

Given the low incentives for both producers and consumers to systematically reuse obsolete electronic goods, what appears as the only alternative is to develop systems for their recycling or disposal. Yet such technologies present a serious problem for recycling because of the toxic components that they contain. Instead of incurring the costs (both economic and environmental) of reclaiming the precious metals contained in these electronics, many choose to sell them off at cut rate prices to what are known as “trash brokers” or “waste traders”, who then broker deals with countries, often developing, with an inexpensive, abundant labor force and poorly enforced global rules on waste trade. Such is the circuit through which the world’s most dangerous waste finds its way from the advanced to the developing world, with disastrous health and environmental costs. (Grossman 2006)

E-Waste Distribution: The Asymmetrical Division of Waste

In order to divert... obsolete toxic materials from our own landfills in the west,“Recyclers” came forward offering to take them away. For this service there is a collection fee. These agents then sell to Chinese scrap buyers, thereby making money on both ends of the transaction. Everything from massive switching stations, industrial computers, hospital technology, old schoolroom computers—in short, all obsolete electronics, even old rotary phones, are today packed into containers, then shipped to China and other developing nations. Edward Burtynsky, Photographic Works.

Although estimates are uncertain, it is said that roughly eighty per cent of North America’s electronic waste is exported internationally, with about ninety per cent ending up in Mainland China as its final destination (Grossman, 2006) Because of the hazardous nature of much e-waste, processing it poses serious risks even in the most technologically advanced facilities. In China, the disposal of e-waste consists of fare from ideal procedures where:

[in] outdoor workshops, people bang apart the computers and toss bits of metal into brick furnaces that look like chimneys. Split open, the electronics release a stew of toxic materials -- among them beryllium, cadmium, lead, mercury and flame retardants -- that can accumulate in human blood and disrupt the body's hormonal balance. Exposed to heat or allowed to degrade, electronics' plastics can break down into organic pollutants that cause a host of health problems, including cancer. Wearing no protective clothing, workers roast circuit boards in big, uncovered woklike pans to melt plastics and collect valuable metals. Other workers sluice open basins of acid over semiconductors to remove their gold, tossing the waste into nearby streams. (Grossman 2006)

According to Jim Puckett the director of the Basil Action Network (BAN), an environmental advocacy organization that tracks hazardous waste, such conditions represent the literal dirty “underbelly of our consumptive cyberage lifestyle” (Grossman, 2006). As Puckett explains, most of the reclamation of e-waste in China can be divided into two types, ‘sham’ and ‘dirty’ recycling:

Waste trade for recycling as witnessed in developing countries falls into two categories. It will either be “sham recycling” where wastes are not really recycled at all, but simply burned or dumped, or “dirty recycling” which involves polluting operations including weak downstream management of residuals that jeopardizes health of the importing country’s populace and environment. Most often, both types of recycling are involved as it is rare indeed when 100% of a waste stream can be recycled. In fact, with some waste streams large proportions of the wastes are simply dumped. Either one of these recycling scenarios - sham or dirty, or a combination of the two, equates to a transfer of pollution from rich to poorer countries. (BAN, 2010).

While the disposal of e-waste in China perhaps represents the leading edge of such exploitive practices, the asymmetrical cost of toxic waste is a problem facing even the most advanced nations:

Historically, hazardous waste recycling has proven to be an environmental nightmare even in rich developed countries. For example, a full 11% of US Superfund priority sites that were required to be cleaned up at enormous costs were caused by recycling operations. And it’s not just an historical problem. For example, in the US, existent secondary metals smelters are notorious polluters and that is the reason no new smelters are being planned for the US. Thus highly polluting secondary industry such as smelting is migrating to poorer countries where pollution regulations are more lax or less enforced and costs can be readily externalized. (BAN, 2010).

E-waste: A Provisional Response

Resulting from the emerging magnitude of e-waste as a problem of global concern, many people from both the advanced and developing world have began to take notice of the problem. Since the late 90s, ecological activist groups such as BAN and Greenpeace, have been working to spread awareness of the potential danger of e-waste as well as develop legislation to curb its asymmetrical distribution to developing nations:

In 1994, the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal banned all exports of hazardous wastes for final disposal and recycling from developed to developing countries. The Parties to the Convention included recycling in the total ban due to the knowledge that export of hazardous waste for recycling from developed to developing countries, also works in contradiction to the obligations of the Basel

Convention. These obligations include the achievement of national self-sufficiency in hazardous waste management and environmentally sound management of wastes through waste prevention. (BAN 2010)

As proponents of such measures point out:

The concerns that necessitated the ban are not limited to the technical capacity of a facility operating in a developing countries but extend to one of the primary objectives of the ban -- providing incentives to manage hazardous wastes via upstream solutions of clean production and toxics use reduction, rather than through downstream approaches of recycling and disposal. By eliminating cost externalities made possible by free trade in wastes to developing countries, the waste crisis is more appropriately solved at source through green design and clean production. (BAN 2010)

As the ecological problematic posed by e-waste becomes increasingly apparent, it remains unclear what steps must be taken to stem the tide of environmental degradation and health risks of the digital consumer age. While activism and international regulation mark a first step, such measures have failed to mobilize the large scale change that their authors and participants might have hoped for. In this respect the movement for ecological change, like other attempts at globally effective actions, has been confronted by what might be characterized as the fundamental problematic of large scale political action today; how to mobilize change across a globally shifting terrain of difference and control. To such a question their has yet to be adequate theorization, but perhaps one might begin by following Slovenian theorist Slavoj Zizek’s proposal expressed in a recent article in the New Statesmen, where fallowing Alain Badiou he explains:

It is instructive, here, to return to the four elements of what the French Marxist philosopher Alain Badiou calls the "eternal idea" of revolutionary politics. What is demanded, first, is strict egalitarian justice: worldwide norms of per capita energy consumption should be imposed, stopping developed nations from poisoning the environment at the present rate while blaming developing countries, from Brazil to China, for ruining our shared environment.

Second, terror: the ruthless punishment of all those who violate the imposed protective measures, including severe limitations of liberal "freedoms" and the technological control of prospective lawbreakers. Third, voluntarism: the only way to confront the threat of ecological catastrophe is by means of collective decision-making that will arrest the "spontaneous" logic of capitalist development (Walter Benjamin, in his essay "On the Concept of History", pointed out that the task of a revolution is to "stop the train" of history that runs towards the precipice of global catastrophe - an insight that has gained new weight with the prospect of ecological catastrophe).

Last but not least, trust in the people: the wager that the large majority of the people support these severe measures, see them as their own and are ready to participate in their enforcement. We should not be afraid to encourage, as a combination of terror and trust in the people, the resurgence of an important figure in all egalitarian-revolutionary terror - the "informer" who denounces culprits to the authorities. (In the case of the Enron scandal, Time magazine was right to celebrate the insiders who tipped off the financial authorities as true public heroes.)

While Zizek's proposal for stricter global discipline might strike some as a regressive return to more hard line (vulgar) Marxist politics, the problematic of a revolutionary program for the digital age remains the site where radical and conservative politics alike seem to falter against the impregnable cliff of the future. What is made clear by the current state of affairs is that to not act is no longer an option. As Deleuze says," It’s not a question of worrying or of hoping for the best, but of finding new weapons."

The Aesthetics of Waste

Error creating thumbnail: Unable to save thumbnail to destination
E-waste is horrifying

“To recreate, if not beauty, than aesthetic dimensions… in trash itself. That’s the true love of the world.”- Žižek, Examined Life

"Being a spectator of calamities taking place in another country is a quintessential modern experience, the cumulative offering of more than a century and a half worth of those professional, specialized tourists known as journalists." Sontag, Regarding the Pain of Others

The (Political) Economy of the Dump

How we became posthuman

"The most efficient means to recover value from e-waste is to destroy any computational ability it has, returning it to a raw state." —Samantha MacBride, The Immorality of Waste: Depression-Era Perspectives in the Digital Age


References

Basil Action Network. 2010. Briefing Paper #7: Hazardous Waste Recycling: No Justification for Toxic Trade. www.ban.org (May) http://www.ban.org/main/library.html (accessed December 12, 2010).

Grossman, Elizabeth. 2006. High Tech Trash: Digital Devices, Hidden Toxins, and Human Health. Washington, DC: Island Press.

Grossman, Elizebeth. 2006. Where computers go to die -- and kill. Salon.com (April 10) http://www.ban.org/Library/Features/060410_where_computers_go.html (accessed on www.ban.org December 12, 2010).

Harden, Blaine. 2001. The Dirt in the New Machine. The New York Times (August 12) http://www.nytimes.com/2001/08/12/magazine/the-dirt-in-the-new-machine.html (accessed December 12, 2010).

Kittler, Friedrich. 1997. Literature, Media, Information Systems. Ed. John Johnson. Amsterdam: G+B Arts International.

Kostigen, Thomas. 2008. The Underbelly of Globalization: Our Toxic Wastes Exported to Developing Countries. CSRwire (September 25) http://www.ban.org/Library/Features/080925_the_underbelly_of_globalization.html (accessed on www.ban.org December 12, 2010).

Marx, Karl. 1976. Capital, Volume 1. Trans. Ben Fowkes. London: Penguin.

Mooallem, Jon. 2008. The Afterlife of Cellphones. The New York Times (January 13) http://www.nytimes.com/2008/01/13/magazine/13Cellphone-t.html (accessed December 12, 2010).

Shaviro, Steven. 2010. Post-Cinematic Affect. Winchester, UK: Zer0 Books.

Taylor, Astra. 2009. Examined Life: Excursions with Contemporary Thinkers. New York: New Press.

Zizek, Slavoj. 2010. Joe Public v the volcano. The New Statesman (April 29) http://www.newstatesman.com/environment/2010/05/essay-nature-catastrophe (accessed December 12, 2010).